PIC
port d'informacio
cientifica

* Records deleted or obsoloted by an update are
not reclaimed as free space and cannot be
reused

* Vacuum claims that space for the system to
reuse, but does not reclaim the space
* No lock, can be done in production
* Vacuum full actually reclaims the space

» Gets an exclusive lock, not production

» But backup / restore seems a more efficient procedure
than vacuum full

" Partitioning

e What is it?

« Splitting one large logical table into various small physical
tables

 \What for?

« Certain queries can be optimized
— various smaller indexes
— full scans only on subtables
e Operations on a whole partition are efficient and easy
- droping a whole partition
— copying it to another media

« Seldom used data can be put into cheaper or slower
tablespaces

" Partitioning

* Needed?

« Our dCache instance has an ever-growing database that
IS interesting to keep: BillingDB

* At PIC, it is around 14 Gb, and doorinfo by itself is more
than 8 Gb. That's only for 2008.

* We use Brian Bockleman's GraphTool package to do
some nice plots, and would like to keep that information
available.

PIC)
port d'informacio
cientifica

Partitioning: Implementation

e Create a master table

* This table will contain no data, have no checks, and no
iIndexes

CREATE TABLE doorinfo (
datestamp timestamp without time zone, (discrimination field)
cellname character varying,
"action" character varying,
"owner" character varying, (index)
mappeduid numeric,
mappedgid numeric,
client character varying,
"transaction” character varying, (index)
pnfsid character varying,
connectiontime numeric,
queuedtime numeric,
errorcode numeric,
errormessage character varying,
path character varying

/‘ Partitioning: Implementation

 Create several child tables, that each inherit
from the master table. Each of these tables is
refered as partition

create table doorinfo_y2007
create table doorinfo_y2008
create table doorinfo_y2009
create table doorinfo_y2010

inherits (doorinfo);
inherits (doorinfo);
inherits (doorinfo);
inherits (doorinfo);

P p—
N N N

PIC)
port d'informacio
cientifica

Partitioning: Implementation

* Add table constraints to define the allowed keys
In each partition
create table doorinfo_y2008 (check (timestamp >= DATA '2008-01-01' AND

timestamp < DATE '2008-12-31')) inherits (doorinfo);

create table doorinfo_y2009 (check (timestamp >= DATA '2009-01-01' AND
timestamp < DATE '2009-12-31')) inherits (doorinfo);

create table doorinfo _y2010 (check (timestamp >= DATA '2010-01-01' AND
timestamp < DATE '2010-12-31')) inherits (doorinfo);

create table doorinfo_y2011 (check (timestamp >= DATA '2011-01-01' AND
timestamp < DATE '2011-12-31')) inherits (doorinfo);

/‘ Partitioning: Implementation

» Create indexes on the key columns if needed

- We have two indexes on doorinfo, owner and
transaction

create index doorinfo_y2007_owner on doorinfo_y2007 (owner);
create index doorinfo_y2007_transaction on doorinfo_y2007 (transaction);
create index doorinfo_y2008_owner on doorinfo_y2008 (owner);
create index doorinfo_y2008_transaction on doorinfo_y2008 (transaction);

/‘ Partitioning: Implementation

» Define a trigger to redirect data inserted into the
master table

create or replace function doorinfo_insert_trigger()
returns trigger as $$
begin
insert into doorinfo_y2009 values (new.”);
return null;
end;
$$
language plpgsql;

create trigger insert_doorinfo_trigger
before insert on doorinfo
for each row execute procedure doorinfo_insert_trigger();

* With this approach, we will need to update the
function each year

PIC)
port d'informacio
cientifica

Partitioning: Implementation

* You can define a more complicated trigger that
automatically selects the correct partition

create or replace function doorinfo_insert_trigger()
return trigger as $$
begin
if (new.datestamp >= DATE '2007-01-01" and new.logdate < DATE '2007-12-31"') then
insert into doorinfo_y2007 values (new.*);
elseif (new.logdate >= DATE '2008-01-01' and 'new.logdate < DATE '2008-12-31') then
insert into doorinfo_y2008 values (new.*);
else
raise exception 'date out of range’;
end if;
return null;
end;
$$
language plpgsql;

”‘ Partitioning: Notes

* Ensure that the constraint_exclusion parameter is
enabled In postgresql.conf

e Constraint exclusion

* Query optimization technique

 Allows planner to scan only one child table instead of all
the tables if a constant is used in the query

select * from doorinfo where datestamp >= DATE '2008-05-21";

”‘ Partitioning: Notes

* No automatic way to verify the CHECK
constraints

« VACUUM & ANALYZE commands have to be
executed on the subtables as well

 Constraint exclusion

* Query optimization technique
 Allows planner to scan only one child table instead of all
the tables

”‘ Partitioning: Notes

* To migrate a table to other media, you can use
ALTER TABLE name SET TABLESPACE new_tablespace;

 That will not migrate indexes; move them by hand

”‘ Warm Standby

e What is it?

e It is a technique for being able to have an up-to-date
database that mirrors de production database

e What it is for

» Up-to-the-minute (constant) backups of the database
e Fast recovery

* Involves playing with the WAL files

A E# \Warm Standby: Write Ahead
Log
» Keeping logs of every change on the data
pages
* Changes to data have to be written after they
have been logged and the log is safe on disk
» This allows roll-forward / redo

* We can replay what happened before a crash

* This allows committing transactions without
needing to flush data to disk

e Less I/O

A Z= \Warm Standby: Write Ahead
Log
WAL files live in the pg_xlog directory

» Postgres uses WAL files if there is a crash in
the postgres server process

 But those same WAL files can also be used for

» Continous Archiving (backups up to the minute)
» Point-in-time Recovery (time machine)

J?%?ﬂ'@é °°°°° ° Warm Standby: Continous
Archiving

» Setup a script that copies WAL files modifying
some parameters in postgresql.conf

e archive_mode
e archive_command
 archive_timeout

* We can keep a backup of the file-system level
database and the WAL files, and replay them as
backup recovery procedure

« Simulating a crash — postgresqgl won't be able to tell the
diference

/‘ =i \Warm Standby: Continous
Archiving
* \We can also have a secondary server

continously in crash-recovery mode recovering
from WALSs sent from the primary server

» also called file-based log shipping
 That means we will have a live backup of the
data, with synchronization up to the minute
* If you also want non-live backups, you can
backup from the secondary

 reduced load on the primary server

”‘ Warm Standby: Procedure

» Set up primary and standby systems as near
identically as possible, including two identical
copies of PostgreSQL at the same release
level.

e Set up continuous archiving from the primary to
a WAL archive located in a directory on the
standby server.

”‘ Warm standby: Procedure

 Make a base backup of the primary server, and
load this data onto the standby.

* Begin recovery on the standby server from the
local WAL archive, using a recovery.conf that
specifies a restore_command that is looping
waiting for new WAL files to be shipped.

”‘ Warm standby

* This smells like High Availability, but it is not — it
iIs Online Backup / Fast Recovery

* For high availability, we need the capability of
do Failover

 This can be done

e Via an external tool, i.e., Heartbeat
» Through other aproaches, like Slony

PIC
port d'informacio
cientifica

e What is it?

* |t is a master-slave replication system to replicate large
databases to a reasonably limited number of slave
systems

* Providing cascading and automatic failover
« External package not provided by postgres developers

« Can be installed by compiling from source code or via
provided rpms

”‘ Slony: Concepts

* Master

* Node that can read and write the database
« Slave

 Node that can only read the database
e Subscription

* Nodes subscribe to a set of tables; master is the provider
while slave are the subscriptors

* |s it based on record-based log shipping

 slaves have each modified record shipped to them so
they have an almost identical copy of the master

A Slony: Concepts

* New slony (2.0) only runs with Postgres 8.3
- Uses new features from 8.3

,‘ wim"Backups vs Warm Standby vs
Slony

 Backups: Disaster Recovery

e Downtime: reaction time + some hours

e Data loss: some hours
« can be lowered highly if you also archive WAL files

 Warm standby: Fast Recovery

» Downtime: reaction time + some minutes

» can be lowered with an automatic failover tool like heartbeat
e Data loss: up to 1 minute

« Slony: High Availability

e Downtime: reaction + some minutes

e Can be automated with failover — order of seconds (lag)
» Data loss: failover — some transactions

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24

